Clark School Home UMD
wie homepage

News Story

Tropical Tree Fibers Can Hold Battery Power, Say UMD Engineers

Bookmark and Share


Tropical Tree Fibers Can Hold Battery Power, Say UMD Engineers


Energy-producing bacteria can nest in hollow conductive fibers

 

Research by UMD Department of Materials Science and Engineering (MSE) faculty member Bing Hu (UMERC and NanoCenter), MSE postdoctoral research associate Hongli Zhu, and their colleagues at the University of Colorado-Boulder, was recently featured in the news section of Materials Today, an Elsevier journal.

 

The article described how "Light, fluffy fibers from the Kapok tree, which grows widely in tropical regions, could make the ideal electrode for a new generation of microbial fuel cells (MFCs)." According to Materials Today:

 

"Because] the fibers are hollow, they provide double the surface area for bacterial colonization.

 

"Raw kapok fibers are simply formed into a paper-like arrangement by vacuum filtration and then carbonized in a tube furnace in an atmosphere of Ar (95%) and H2 (5%) to render them conductive. The researchers used the carbonized and uncarbonized fibers as electrodes in single-chamber air-cathode MFCs and compared the performance to traditional carbon cloth.

 

"'The direct carbonization of low-cost and naturally available hollow Kapok fiber provides an advantageous alternative to non-renewable solid macroporous carbon cloth electrodes,' explains Hu. 'It is much cheaper, lighter, and has much higher gravity energy density.'"

 

Read the entire article at Materials Today.

 

 

 

Image: J.M. Garg via Wikimedia Commons

October 8, 2014


Prev   Next

Current Headlines

UMD/MSE Graduate Student is an MRS Graduate Student Award Finalist This Fall

ME Alumni Awarded Clark School Glenn L. Martin Medal

Mentors Needed for Women's Hackathon!

ChBE Students Benefit from Co-op Experience

UMD Solar Decathlon Team Takes 1st Place in the U.S., 2nd Place in the World

Building Together Announcement Garners Extensive Media Coverage

UMD Will Be Represented at International Summit on Stability of Organic and Perovskite Solar Cells

The Home of the Future

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar

Additional Resources

UM Newsdesk

Faculty Experts